Identification of Local Clusters for Count Data: A Model-Based Moran’s I Test

نویسنده

  • Tonglin Zhang
چکیده

We set out IDR as a loglinear model-based Moran’s I test for Poisson count data that resembles the Moran’s I residual test for Gaussian data. We evaluate its type I and type II error probabilities via simulations, and demonstrate its utility via a case study. When population sizes are heterogeneous, IDR is effective in detecting local clusters by local association terms with an acceptable type I error probability. When used in conjunction with local spatial association terms in loglinear models, IDR can also indicate the existence of first-order global cluster that can hardly be removed by local spatial association terms. In this situation, IDR should not be directly applied for local cluster detection. In the case study of St. Louis homicides, we bridge loglinear model methods for parameter estimation to exploratory data analysis, so that a uniform association term can be defined with spatially varied contributions among spatial neighbors. The method makes use of exploratory tools such as Moran’s I scatter plots and residual plots to evaluate the magnitude of deviance residuals, and it is effective to model the shape, the elevation and the magnitude of a local cluster in the model-based test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Sea Surface Temperature (SST) and its spatial changes in Gulf of Oman for the period of 2003 to 2015

Considering the great application of Sea Surface Temperature (SST) in climatic and oceanic investigations, this research deals with the investigation of spatial autocorrelation pattern of SST data obtained from AVHRR sensor for Gulf of Oman from 2003 to 2015 (13 years). To achieve this aim, two important spatial statistics, i.e. global Moran and Anselin local Moran’s I were employed within mont...

متن کامل

Loglinear Residual Tests of Moran’s I Autocorrelation and their Applications to Kentucky Breast Cancer Data

This article bridges the permutation test of Moran’s I to the residuals of a loglinear model under the asymptotic normality assumption. It provides the versions of Moran’s I based on Pearson residuals (IPR) and deviance residuals (IDR) so that they can be used to test for spatial clustering while at the same time account for potential covariates and heterogeneous population sizes. Our simulatio...

متن کامل

Explaining the spatial patterns of drought intensities in Iran

 Recognition of spatial patterns of drought plays an important role in monitoring, predicting, confronting, reducing vulnerability, and increasing adaptation to the hazard. The aim of this study is to identify the spatial distribution and analyze the annual, seasonal, and monthly spatial patterns of drought intensities in Iran. For this purpose, drought intensities were extracted from the month...

متن کامل

Spatial, temporal, and spatiotemporal analysis of cutaneous leishmaniasis in North Khuzestan Province, Iran, from 2011 to 2015: brief report

Background: Leishmaniasis is a zoonosis disease. About 350 million people are at risk of developing a disease, with 1.5 to 2 million new cases every year in the world. The aim of this study was to determine the space-time clusters of cutaneous leishmaniasis in north of Khuzestan Province, Iran. Methods: In this cross-sectional study, the annual cutaneous leishmaniasis incidence per 100,000 ind...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007